Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1146720160030020080
±¹Á¦ÄÄÇ»ÅÍ°¡»ó¼ö¼úÇÐȸ ÇмúÁö
2016 Volume.3 No. 2 p.80 ~ p.83
Reconstruction of the Inferior Orbital Wall with Simplified Simulation Technique in Case of the Fracture Extending to the Posterior Orbital Floor
Kim Kyu-Nam

Kim Hoon
Abstract
A 37-year-old male was assaulted and complained of severe periorbital swelling. Physical examination revealed that there were limitation of eyeball movement on upper gaze, diplopia, and hypoesthesia on the infraorbital nerve innervating region. Three-dimensional (3D) computed tomography (CT) of facial bone exhibited the fracture of orbital floor accompanying the significant amount of orbital contents¡¯ herniation extending to the far posterior part. To recover the orbital volume and restore orbital floor without threatening the optic nerve, preoperative simplified simulation was applied. The posterior margin of the fractured orbit was delineated with simulation technique using cross-linkage between the coronal and sagittal sections based on the referential axial view of the CT scans. Dissection, reduction of orbital contents, and insertion of the absorbable mesh plate molded after the prefabricated template by the simulation technique was performed. Extensive orbital floor defect was successfully reconstructed and there were no serious complications. The purpose of this report is to emphasize the necessity of preoperative simulation in case of restoring the extensive orbital floor defect.
KEYWORD
Orbital floor fracture, Simulation technique
FullTexts / Linksout information
Listed journal information